| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Grade 7/8 Math Circles
March 6/7/8/9, 2023

Recursion and Stack ADTs

What Is Recursion?

What is recursion? If you’ve heard of recursive sequences in math, you might think of a famous se-

quence called the Fibonacci Sequence. But what makes this sequence recursive? Let’s take a look.

Example A

The Fibonacci sequence:

Place in Sequence

1

2

7

8

Value

1

1

13

21

next value based on previous values.

What is the pattern here? We can see that the first two numbers are 1 and 1, but after that
the value generated is the sum of the previous two numbers. For example, the third number
in the sequence (2) is the sum of the two previous numbers, 1 and 1. The eighth number in

the sequence (21) is the sum of the two previous numbers, 8 and 13.

So from this example, we can see that a recursive sequence is a sequence that generates the

Let’s look at an example that might help you think about recursion in general. (This example is

taken from this YouTube video on recursion.) Suppose you're waiting in line to pay for your gro-

ceries. You just got there and wanted to know how long the line was. One way you could find out

would be to go and count every person in the line. Or you could find out how many people are in a

line through recursion.

o

A

- e Rl A e

Designed by pikisuperstar / Freepik

S &
\

-
)
il g

https://www.youtube.com/watch?v=IJDJ0kBx2LM

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

It works like this. First, you ask the person in front of you how many people are in front of them.

paiditi

- e R S oA s
Then the person in front of you asks how many people are in front of them and so on. Each time

someone asks the person in from of them how many people are ahead in line, we call this an itera-

tion. This process would only stop until the second person in line asks the first person.

There's no one
in front of me

/\/\/WW\
Y

Then the first person would know that they are the first person in line, so they would tell the sec-

ond person that there was no one in front of them. The second person would then tell the person
behind them there was one person in front of them. This process would repeat until the person in

front of you told you how many people were in front of them.

There are 6 There are 2 people

eople in s o @ -
F o i in front of me

NWYV\K\
*

%’\ ?\ [l i

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

In this scenario, you would know that there are 7 people in front of you, because the person in
front of you told you that there were 6 people in front of them. So we can summarize recursion

as the idea of making the problem a smaller version of itself after each iteration.

Recursion In Computer Science

That was recursion in a real life scenario, but how about recursion in computer science? It is a
topic that is heavily studied in the world of computer science, and to study it, we will have to use

pseudo-code (simplified code). Let us define some computer science ideas that we will use.

Variable: the name for an object. Just like how x and y are variables in math and can take
on values, the same can happen for variables in computer science.

Function: a set of instructions that takes an input and produces an output. You can think of
it almost like a function in math. When we use a function, we say that we call the function.
Argument: an input variable that a function can manipulate. A function can have no argu-
ments, one argument, or more than one argument.

Return statement: a statement that determines the output of a function.

If statement: a decision statement that is based on whether something is true or false.
Sometimes this is called a conditional statement.

Base case: the case where the answer is “obvious” and stops the recursion. In our line ex-
ample, the base case was when the first person was asked how many people were in front of
them.

Recursive case: the case where the answer requires another function call.

Example B

Functions, arguments, and return statements:

An example of a function with an argument and return statement is the following:

1 plus_one(number) {
2 return number + 1

3 }

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

The function called plus_one takes the argument, number, and returns the same number

but one larger. The function call plus_one (1) gives us 2 as our value.

Notice that if we have an open bracket, we must also have an end bracket. Here, our open
and close curly brackets on lines 1 and 3 show us that line 2 is the body of the function. In

general, brackets are used to “group” different sections of code.

if statement:

An examples of 1f statements:

1 if(a=b) { 1 if(a=b) {
2 print("equal") print("equal")
3 } else if(a>b) {

4 print("greater than")
5 } else {

6 print("less than")

7

N > B 2\

J

The quotation marks show that the print statement gives us a word instead of just a number
or another variable. Both sets of code have variables a and b. The code on the left compares
their value before printing whether a is equal to b (on lines 1-2), greater than b (on lines 3-

4), or less than b (on lines 5-6). The code on the right just compares a and b, prints whether

they are equal or not, and does nothing otherwise.

Recursive functions, base cases, and recursive cases:

An example of a recursive function with a base case and recursive case:

1 (exp) {

2 if (exp=0) {

3 return 1

4 } else {

5 return 2% (exp-1)
6 }

7}

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Our function two_power takes a (non-negative) exponent, exp, and calculates the 2°*P. The
base case (on lines 2-3) is that if our exponent is 0, then our value is automatically 1. The re-
cursive case (on line 5) happens otherwise. Note that the recursive case always calls the func-

tion.

Let’s trace our code to see how this happens. If we call the function with two_power (3)
then we want to see whether we have our base case or whether we have to go into our re-
cursive case. Since exp=3, the first iteration of two_power is not our base case and returns

two_power (3) => 2xtwo_power (3-1) => 2xtwo_power (2). This gives the following:
two_power (3) => 2xtwo_power (2)

So we go to our second iteration to find our answer. Since exp=2 in our second iteration,
this is also not our base case and returns two_power (2) => 2xtwo_power (2-1) =>

2xtwo_power (1). This gives the following:

two_power (3) => 2xtwo_power (2)

=> 2*x2xtwo_power (1)

So we go to our third iteration to find our answer. Since exp=1 in our third iteration,
this is also not our base case and returns two_power (1) => 2xtwo_power (1-1) =>

2xtwo_power (0). This gives the following:

two_power (3) => 2xtwo_power (2)
=> 2x2xtwo_power (1)

=> 2x2x2xtwo_power (0)

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

So we go to our fourth iteration to find our answer. Since exp=0 in our fourth iteration, this

is finally our base case and returns two_power (0) => 1. This gives the following:

two_power (3) => 2xtwo_power (2)
=> 2x2xtwo_power (1)
=> 2x2x2xtwo_power (0)
=> 2%2%x2%1

=> 8

This makes sense since 23 = 8.

Some tips and tricks

If that was confusing for you, that’s okay, because recursion is confusing for many other people too.

That includes university students! Here are some tips to help you think about recursion:

1. Always think about your base case first. The base case is the scenario in your problem that is

at its smallest point and can be solved easily. It should be almost trivial to solve a base case.

2. When thinking about your recursive case, you should always try to make your return value
a smaller version of the bigger problem. You want to get closer to your base case at every
step. Often you'll add/subtract a number or add/remove something from your variable to get

closer to your base case.

3. Don’t try to track your code through every step when it comes to big cases! For our example
above, it would be pointless to go through two_power (50) step by step. It will only hurt

your brain and subject yourself to human error.

Example C
Suppose you wanted to write a function called reverse that took a number called num and
flipped all the digits. How would you do that?

First, let’s think about our base case. What’s the smallest case that we can be given? The
“most obvious” case would be if the number is a single digit. This is the smallest case because
no work is needed to flip a number that is just one digit; a single digit number flipped is just
itself.

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

So we know that our function, which we call reverse, looks something like

(num) {

if (len(num)=1) {
return num

} else {

recurstive case

N S O = W N -

where len (num) gives the length of num and num is a positive number.

Then let’s think about our recursive case. How do we make our problem smaller at every it-
eration? Given a number that has n digits (meaning an arbitrary number of digits), we would
be able to make our problem smaller by reducing the number of digits in the number. So how
would we do this? If we think about a number with two digits, we would flip this number by
taking the first digit and putting it at the end. So applying this idea generally, we can write

our function to be the following.

1 (num) {

2 if (len(num)=1) {

3 return num

4 } else {

5 return (rest(num)) & first_dig(num)
6 }

7

rest (num) removes the first digit of num and gives the rest of the digits of the numbers and
first_dig(num) gives the first digit of the number. Here, we just use “&” to combine the

digits. If we were to use “+”, then we would be doing math addition.

Exercise 1
Write a recursive function called fibonacci that takes a number n and gives the n'® term of

the Fibonacci sequence. Keep in mind that the first two digits of the sequences are 1 and 1. If

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

you need a reminder of how the Fibonacci sequence works, refer back to Example A.

Note: n'" means counting an arbitrary number, like 15,274 374 4th nth,

Solution
Since the first two digits of the sequence are 1 and 1, we actually have two base cases. If n=1,
then we return 1, and if n=2, then we also return 1. So this means our function would look

something like this.

recursive case

1 (n) { 1 (n) {

2 if(n=1) { 2 if(n=1 or n=2) {

3 return 1 3 return 1

4 } else if(n=2) { 4 } else {

5 return 1 5 recursive case
6 } else { 6 }

7 7

8 8

9 9

Note that these two ways of writing the function are the same, since in both base cases the
return value is 1. The second way is a little more efficient to write since it uses less code. This

would not work if the return values were different for the base cases.

Next, we look at our recursive case. Since our n* Fibonacci number is calculated by adding
the previous two Fibonacci numbers, we can deduce that our recursive case must be return

fibonacci (num-1) + fibonacci (num-2). So we get the following function

1 (n) {

2 if (n=1 or n=2) {

3 return 1

4 } else {

5 return (n-1) + (n-2)
6 }

7}

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Abstract Data Types

Now we’re going to look at something called an abstract data type. What is a data type? If you
learned about computer science, you might tell me that something like an integer or a string is a
data type. That’s correct, but when we’re looking at an abstract data type, we’re looking more at
a data structure. These data structures include stacks, arrays, queues, linked lists, trees, and many

more! Don’t worry if you don’t know what these are.

But what makes these data structures abstract? You can think of abstract data types (or ADTs
for short) as machines that have certain functions. For example, we can look at a TV and say
that it at least has the functions to turn on/off, to turn up/down volume, and to change input.
While we know that a TV can do these things, we might not know exactly how the remote control
connects to the TV and how the circuits and lights work in it. So the TV is abstract to the user.
ADTs work very similarly. They have functions that a user can use, but as the user we won'’t be
able to see exactly how everything inside the ADT works. In this lesson, we will focus on Stack
ADTs.

Stack ADTs

Stacks appear in the real world all the time. When do you see stacks? Maybe you see stacks of
pancakes, stacks of paper, or even stacks of shipping containers. One of the most classic stack prob-

lems is the Tower of Hanoi. (You will see this in your problem set later.)

Stop and Think

What other real life scenarios can be modelled by a Stack ADT?

You might be more familiar with a phone game advertisement for Sand Sort Puzzle. Believe it
or not, that is a game about stacks! Some other examples of stacks are stacks of plates, stacks
of chairs, stacks of trays, or even burgers. Anything that is stacked on top of each other can
be modelled by a Stack ADT.

A Stack ADT is basically the same thing. Let’s look its functions (operations):

e top (): returns what the item at the top is. Notice that this does not require any argu-
ments.
e is empty (): checks whether the stack is empty. It returns true if it is empty and false

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

otherwise.

e is_full (): checks whether the stack is full. It returns true if it is full and false other-
wise. Theoretically, we don’t have to have this function since we can imagine a stack to be
infinitely large. But practically, this is needed because computers can only hold so much in-

formation.
e push (item): puts item at the top of the stack.
e pop (): takes off item from the top of the stack and returns it (if the stack has anything).

[tems can be anything you want! To use a function (or operation), we code stack.top (),
stack.is empty (), stack.is_full (), stack.push (item), or stack.pop (), where

stack is the name of our stack.

Note that our stack is abstract to us (the user) because we know how to interact with it using our
five stack operations, but we don’t exactly know how each operation works. We don’t even know

how the information is kept track of within the computer!

10

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Exercise 2
Given the following pictures of the stack, fill out the table based on what would happen if you

called the stack function from what the picture is showing.

function call return value modifications

stack.top ()

stack.is_empty ()

stack.is_full ()

stack.push (item)

k.
empty stack stack.pop ()
function call return value modifications
stack.top ()
Hello world! stack. isiempty ()
Crade 8
—— stack.is_full ()
Math is fun stack.push (item)
One

stack.pop ()

non-empty stack

11

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Solution

function call return value modifications

stack.top () none none

stack.is_empty () true none

stack.is_full () false none
stack.push (item) none puts item at the
top of the stack

stack.pop () none none

empty stack

function call return value modifications

stack.top () "Hello none

World!™"
stack.is_empty () false none
Hello world!
stack.is_full () ? none
Crade 8 . .
stack.push (item) none puts item at the
Crade top of the stack
Math is fun " "
stack.pop () Hello removes "Hello
One World!™" World!" from the
non-empty stack top of the stack
Note that:
e top (), is_empty, and is_full will never modify your stack.

e push (item) will always work.

e pop () can only return something if there is something on the stack.

stack.push (stack.pop ())).

An item that is popped can be directly used to push onto a stack (ie.

12

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Example D
Supposed you asked your younger sibling to make a burger
for you. You asked that in between the buns, the order of
the ingredients from bottom to top would be lettuce, tomato,
pickle, and then patty. Your sibling misheard you and made
Lettuce the following burger for you, represented in this stack called
Tomato burger.
Patty 1. What does burger.top () return? What does that
Bun tell you about the burger?
Pickle 2. Use stack functions (operations) to fix your burger. As-
Bun sume that when you pop an item, it goes onto a plate.
Solution

1. Calling burger.top () returns “Lettuce”. Since the top of the burger is not a bun, you
could reason just from looking at the top that this is not a burger (or maybe a lettuce burger

at best).

2. We want our stack from bottom to top to be: bun, lettuce, tomato, pickle, patty, bun.
Since we already have a bun on the bottom, we just have to remove everything above. This
means that we would have to call stack.pop () 5 times before pushing the ingredients back

on the stack in order. So we would have:

13

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

* Pop the ingredients on top of the bottom bun *
burger . pop ()
burger.pop()
burger.pop()
burger.pop()
burger.pop()

* Push the ingredients back in order *

© 0 N O Ot ks W N

burger.push("Lettuce")
10 burger.push("Tomato")
11 burger.push("Pickle")
12 burger.push("Patty")
13 burger.push("Bun")

This gives the following before and after picture:

Lettuce . Bun
stack operations
Tomato > Patty
Patty Pickle
Bun Tomato
Pickle Lettuce
Bun Bun

14

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Exercise 3
Suppose you had the same burger as in Example E, but instead of popping an ingredient onto
the plate, you popped the ingredient to another stack. In this setup, other than your burger

stack, you have stackl and stack2. Use stack functions (operations) to fix your burger.

Lettuce

Tomato

Patty

Bun

Pickle

Bun

burger stackl stack2

Solution

Similar to Example E, we need to pop every ingredient on top of the bottom bun. But what
is different is that since we are popping ingredients onto stacks, when we rebuild our burger,
we can only use the ingredient on top. This means that if we pop all our ingredients onto one
stack, it will be less efficient when we need the ingredient that is at the bottom of the stack.

Note that there are many ways to solve this problem, some being more efficient than others.

Let’s start by popping off the ingredients from burger and pushing what we can onto
stackl.

1 stackl.push(burger.pop())

This pops “Lettuce” off of burger and pushes it onto stackl. Since we want “Lettuce”
to be on top of the last “Bun”, we can reason that we should not push anything else onto

stackl so that we can easily access “Lettuce” after we’ve popped everything we need to off

15

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

of burger. So we push everything else onto stack2 instead.

stack2.push(burger.pop())
stack2.push(burger.pop())
stack2.push(burger.pop())

Ot s W N

stack2.push(burger.pop())

Now we get the following picture:

Pickle
Bun
Patty
Bun Lettuce Tomato
burger stackl stack2

Now we start stacking the burger again. Since “Lettuce” is easily accessible, all we have to do

is pop it off of stackl and push it onto burger.

6 burger.push(stackl.pop()) * Put the lettuce onto burger *

Since we need “Tomato” to be pushed onto burger, we need to get to the bottom of
stack2. But we also don’t want to push these other ingredients onto burger either, so we

push it onto stackl since it is currently empty. So we have the following code.

16

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

stackl.push(stack2.pop())
stackl.push(stack2.pop())
stackl.push(stack2.pop())
10 burger.push(stack2.pop()) * Put the tomato onto burger *

Now we have the following picture:

Tomato Patty

Lettuce Bun

Bun Pickle
burger stackl stack?2

Now we finish off our burger with the following stack operations.

11 stack2.push(stackl.pop())

12 stack2.push(stackl.pop())

13 burger.push(stackl.pop()) * Put the pickle onto burger *

14 stackl.push(stack2.pop())

15 burger.push(stack2.pop()) * Put the patty onto the burger *
16 burger.push(stackl.pop()) * Put the bun onto the burger *

17

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Combining Recursion and Stack ADTs

We've looked at two separate ideas in this lesson: recursion and Stack ADTs. But how can we put
these two ideas together? Even looking at our burger example, there we saw a lot of repeated ac-
tions where our stack got smaller (or bigger). Well, what is recursion good for? It’s good for doing

repeated actions. Let’s take a look at the following example.

Example E
What does this function (called function) do?
1 (stackl, stack2) {
2 if (stackl.is_empty()) {
3 return "Done"
4 } else {
) stack2.push(stackl.pop())
6 return (stackl, stack?2)
7 }
8 %
Solution

Let’s use our recursion skills to analyze function.

Base case: Notice that the base case is to return "Done" if stack1l is empty, since

stackl.is_empty () only returns true if that is the case.

Recursive case: Notice that the recursive case is to first pop an item from stackl and push
it onto stack2. This modifies both stackl and stack2 before function recursively calls
itself with the modified stacks. Note that the top item in stackl will become the bottom

item in stack2, and the bottom item in stack1l will become the top item in stack2.

So we can summarize function as a function that takes two stacks, stackl and stack2,

and “flips” stackl onto stack?2.

18

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Example F
What does this function (called other_function) do?

1 other_function(stack, count) {
2 if(stack.is_full()) {
3 return "Done"
4 } else {
5 stack.push(count)
6 other_ function(stack, count+1)
7 }
8 }
Solution

Let’s use our recursion skills to analyze function.

Base case: Notice that the base case is to return "Done" if stack1 is full, since

stackl.is_full () only returns true if that is the case.

Recursive case: Notice that the recursive case is to push count onto the stack and then to

call other_function with an increased count by one.

So we can summarize other_function as a function that takes a stack and keeps on

adding count to the stack increasingly until stack is full.

Exercise 4
Write a function called search that takes stack and item as arguments and searches for
item within stack. If the item is found, then return true. If it cannot be found, then re-

turn “Not found”.

Solution
First, we want to look at the structure of our function. Our function is called search and

have our two arguments, stack and item.

19

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

(stack, item) {
if (base case condition) {
base case
} else {

recursive case

N O O s W N -

Base case: Then we look at our base case, or in other words, when is it “obvious” that we
have our answer? It’s “obvious” when we either have item at the top of the stack or if the

stack is empty. So we have our following code.

(stack, item) {
if (stack.is_empty()) {
return "Not found"
} else if(stack.top()=item) {
return true
} else {

recursive case

© 00 N O Ot s W N

Recursive case: Lastly, we look at our recursive case, or in other words, how can we make our

problem smaller.

20

| The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

1 search(stack, item) {

if (stack.is_empty()) {
return "Not found"

} else if(stack.top()=item) {
return true

} else {
stack.pop()

return search(stack, item)

© 00 N O Ut = W N

—
)
(-]

Note that since stack.pop () modifies the stack, our problem gets smaller every function

call.

21

